()能量转换技术的研究的目的是要形成高速粒子脉冲。美空军的研究机构称,传统的可控硅开关和火花放电开关的研究已经完成,下一步要开展磁性开关研究,这种开关基于饱和的电磁感应原理,具有很高的重复率。

    《机甲世纪》中的远战型机体很好的诠释了粒子武器远距离、高杀伤的优秀特性。与现今的粒子武器不同的是,在《机甲世纪》的背景时代里,由于原子物理技术的飞跃式发展,粒子武器的质量和体积已经缩小到机甲可以直接装配的程度了。虽然外观缩小了,但是粒子源、粒子加速器、导向磁线圈的基本构造还是保留的。

    游戏中,高耗能问题一直是困扰游戏中粒子武器发展的一大羁绊,但随着针对碟型弃舰研究项目的展开,比核能更强大的正反物质湮灭能量逐步为人类所运用。粒子武器的发展瓶颈也终于被突破了。

    而从小行星带袭来的小行星,从庞多拉之意“意识场能”内核的“天毁计划”开始启动至今,已经耗时达近半年时间了,如果庞多拉之意“意识场能”内核的“天毁计划”的多米诺骨牌效应和蝴蝶效应开始起到作用,则逐步就会形成向蓝色星球轰击而来的小行星。

    小行星带是太阳系内介于火星和木星轨道之间的小行星密集区域,由已经被编号的120,437颗小行星统计得到,985的小行星都在此处被发现。

    由于小行星带是小行星最密集的区域,估计为数多达50万颗,这个区域因此被称为主带。距离太阳约217-364天文单位的空间区域内,聚集了大约50万颗以上的小行星,形成了小行星带。这么多小行星能够被凝聚在小行星带中,除了太阳的引力作用以外,木星的引力起着更大的作用。

    小行星带由原始太阳星云中的一群星子(比行星微小的行星前身)形成。但是,因为木星的重力影响,阻碍了这些星子形成行星,造成许多星子相互碰撞,并形成许多残骸和碎片。

    小行星带内最大的三颗小行星分别是智神星、婚神星和灶神星,平均直径都超过400公里;在主带中仅有一颗矮行星—谷神星,直径约为950公里;其余的小行星都较小,有些甚至只有尘埃大小。

    小行星带的物质非常稀薄,已经有好几艘太空船安通过而未曾发生意外。在主带内的小行星依照它们的光谱和主要形式分成三类碳质、硅酸盐和金属。

    另外,小行星之间的碰撞可能形成拥有相似轨道特征和成色的小行星族,这些碰撞也是产生黄道光的尘土的主要来源。

    1766年德国天文学家提丢斯(jtt)偶然发现一个数列(+4)/10,将=0,3,6,12,……代入,可相当准确地给出各颗大行星与太阳的实际距离。

    这件事起初未引起人们的注意,后来柏林天文台的台长波德(jbe)得知后将它发表,乃为天文界所知。

    在1781年发现天王星之后,进一步证实公式有效,波德于是提出在火星和木星轨道之间也许还有一颗行星。

    1801年,西西里和皮亚齐(pzz)在例行的天文观测中偶然发277u处有个小天体,即把它命名为谷神星(ere)。

    1802年,天文学家奥伯斯(hbere)在同一区域内又发现另一小行星,随后命名为智神星(p)。

    威廉·赫歇尔认为这些天体是一颗行星被毁坏后的残余物。到了1807年,在相同的区域内又增加了第三颗婚神星和第四颗灶神星。

    由于这些天体的外观类似行星,威廉·赫歇尔就采用希腊文中的语根ter-(似星的)命名为ter,中文则译为小行星。

    拿破仑战争结束了小行星带发现的第一个阶段,一直到1845年才发现第五颗小行星义神星。

    紧接着,新小行星发现的速度急速增加,到了1868年中发现的小行星已经有100颗,而在1891年马克斯·沃夫引进了天文摄影,更加速了小行星的发现。

    1923年,小行星的数量是1,000颗,1951年到达10,000颗,1982年更高达100,000颗。现代的小行星巡天系统使用自动化设备使小行星的数量持续增加。